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The stability of steep gravity waves. Part 2 
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In the previous work (Tanaka 1983), the linear stability problem of surface gravity 
waves on deep water to ‘ superharmonic’ disturbances was investigated. The result 
obtained there suggested that the waves lose stability at the steepness which 
corresponds to the maximum total energy and the impulse. This result, however, 
apparently contradicts other work and thus the validity of it has been regarded as 
questionable. In  the present paper, the validity of our previous result is first 
confirmed by two independent methods. Then, i t  is also shown that the contradictions 
with other works will disappear in a natural way when the explicit form of the 
unstable disturbance around the critical steepness is appropriately taken into 
account. 

1. Introduction 
In  the previous work (Tanaka 1983, hereinafter referred to as [MT]) we investigated 

the linear stability of periodic surface gravity waves on deep water to ‘ superharmonic ’ 
disturbances. This problem was first treated intensively by Longuet-Higgins ( 1 9 7 ~  
and by extrapolating the numerical results obtained there, he proposed that the 
periodic gravity waves on deep water would lose stability at the steepness ak where 
the phase speed of the wave attains a maximum. (As shown by Longuet-Higgins & 
Fox (1978), many important quantities associated to the gravity waves such as the 
phase speed, the total energy, the impulse do not change monotonically but oscillate 
infinitely many times as ak is increased toward the limiting value ak = 0.4434.) To 
check the validity of this conjecture, we investigated this same problem in [MT], 
where the linear stability calculation was performed with high accuracy even for those 
waves with large steepness that were not treated by Longuet-Higgins. The most 
remarkable result obtained there was that, contrary to the conjecture of Longuet- 
Higgins, the instability first occurred at the steepness which corresponds to a 
maximum not of the phase speed but of the total energy and the impulse of the basic 
wave. (These two quantities are known to become stationary at the same values of 
ak, Longuet-Higgins 1975.) 

This result of [MT], however, involves some apparent contradictions with other 
works. Chen & Saffman (1980) first investigated the problem of bifurcation of steady 
gravity waves on deep water. They traced the value of the Jacobian of the system 
of governing equations for steady gravity waves in order to detect the bifurcation 
points. According to their analysis, the Jacobian never changed sign at any steepness 
even though they followed the solution branch for regular waves of class 1 for almost 
the full range of ak. They concluded that there would thus probably be no 
‘superharmonic ’ bifurcation. The problem of bifurcation of gravity waves has 
recently been treated again by Longuet-Higgins (1985). He employed a formulation 
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of the problem quite different from that of Chen & Saffman and gave analytically 
an independent confirmation of the Chen-Saffman’s guess that there is no ‘super- 
harmonic’ bifurcation (other than the trivial one corresponding to  a pure phase 
shift). On the other hand, the stability calculation of [MT] shows that there is an 
eigenmode (the mode n = 2 after the designation by Longuet-Higgins) whose 
eigenvalue becomes zero at the steepness which corresponds to the maximum total 
energy, implying that the Jacobian of Chen & Saffman should vanish there. The 
existence of such an eigenmode which becomes neutral at  some steepness would 
also imply that there would be a new branch of steady solution emanating from that 
critical point and that a ‘ superharmonic ’ bifurcation would occur. 

Moreover, quite recently, Longuet-Higgins (1984) proved analytically that, apart 
from the trivial eigenmode which corresponds to a pure phase shift, an eigenmode 
with zero eigenvalue is possible only at the steepness where the phase speed is 
stationary. Therefore, the existence of a neutral eigenmode as mentioned above seems 
to violate this analytical result because this mode is not the trivial one in the sense 
that n 9 1 and the phase speed of the wave is not stationary at all at the point of 
maximum total energy. 

The existence of these apparent contradictions with other work raised doubts about 
the validity of the numerical result of [MT] and so we have published this paper 
to confirm independently the validity of the numerical result of [MT] and to give a 
satisfactory explanation for the cause of the contradictions mentioned above. 

In  $2, we describe our recent numerical experiments in which the linearized dis- 
turbance equations are integrated directly with respect to the time. Then, one can 
check the validity of [MT] simply by comparing the growth rates of the disturbances 
evaluated from these experiments and those anticipated from the result of [MT]. In 
order to get another independent verification, we have also carried out the linear 
stability calculation again, employing the method developed by Longuet-Higgins 
(1978), a method quite different from our original one. The results obtained from 
these calculations will be shown in the same section. 

Section 3 is devoted to the second purpose of this work. It will be shown there that 
the linear independence of the unstable eigenvector and the eigenvector which 
corresponds to a pure phase shift gradually diminishes as ak approaches the critical 
value, and ultimately the two become linearly dependent just a t  the critical point. 
By the use of this new and unexpected fact, the apparent contradictions mentioned 
above are shown to disappear and all the previous work to become consistent. 

In the final section, we shall first summarize the results obtained in the present 
work and then briefly refer to the problems which remain as yet unresolved and 
await further investigations. 

2. Temporal evolution of linear disturbances 

series of conformal mappings as follows: 
As in the previous work [MT], let us introduce a variable ( which is defined by a 

5 = exp (-3 ; 

(=- [+a ( - 1  < a < O ) ;  
1 +a[ 
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where W (  = @+ i!P) is the complex velocity potential of the basic undisturbed wave 
with phase speed c. By these transformations, the one-wave cycle of the basic wave 
is ultimately mapped onto the unit disk of the f-plane with a branch cut along the 
negative real axis ( -  1 < Ref < a) as shown in figures 1 and 4 of [MT]. The last 
transformation ( [ + f )  was introduced in order to stretch the region near the crest, 
and the rate of stretch is intensified as the parameter a approaches - 1. 

Throughout this work, we consider small disturbances superposed on a steady 
gravity wave. Thus we shall express the displacement of the free surface q(x, t )  and 
the velocity potential #(x, y, t )  as 

q(x7 t )  = H ( 4  +f@, t ) ,  

#@, y, t )  = @@, y )  + B(x ,  y, t ) ,  

where H ( x )  and @(x, y) represent the displacement of the free surface and the velocity 
potential of the steady undisturbed wave, respectively, and f ( x ,  t )  and B(z, y, t )  are 
small disturbances to these quantities. By linearizing the free-surface boundary 
conditions with respect to small disturbances, we obtain the following linearized 
disturbance equations which must be satisfied along the undisturbed free surface 
Y = H ( x ) ,  

Tt + G2 T,+ ( H ,  8,- a,) B+ r"(H2 a,- a,) @, = 0, 

Bt + (@,a,+ @, 3,) B+f{ (@,  a, + q/ a,) @,+ 1) = 0. 
} (2.2) 

Since the undisturbed free surface corresponds to the unit circle of the f-plane, the 
conditions (2.2) can be transformed into those on this unit circle as follows: 

where y is the arclength along the unit circle and 

C = B,, B E  6, and F(y) = (l+a2-2acosy)/(l-a2).  

The quantities q and I9 describe the basic flow field and are defined by the relation 
dW/dz = qee-i8. 

The assumption of the irrotational motion implies that the increment in 4 in one 
wavelength does not depend on y and is equal to zero. (The disturbance velocity is 
assumed to vanish at infinite depth.) This fact means that, even though the mapped 
region contains a branch cut along the negative real axis, the complex velocity 
potential of the disturbance zZ( = $+i$) should be continuous even on the branch 
cut and therefore analytic throughout the unit disk without any cut. From this, we 
can approximate ZZ, by a truncated MacLaurin expansion in as 

N 

k-0 
8 = B+i$ = X (ak - ibk ) fk .  

(In all the actual calculations, we set N = 128.) Particularly along the unit circle 
(f = e'Y), this expansion gives the following expressions for $( y) , G( y) and B( y ) along 
the free surface: 

10 F L Y  156 
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N 
6(y) =@{-sin8 x k(Uk  COSky+bksinky)+cos8 I: k(-bkCOSky+Uksinky)}; 

k-1 k-1 

N N I 

(2.4) 

Therefore, if $(y)  and f ( y )  are specified for 0 < y < 2n at some instant, then d$/dt 
and dy"ldt can be evaluated by (2.3) and (2.4). In this manner, we can trace the 
temporal evolution of the disturbance. For the time stepping we used a library 
program called ODAM in FACOM SSL I1 which integrates a system of first-order 
ordinary differential equations by the Adams-Bashforth-Moulton scheme. 

As in [MT], we employed the quantity w(  = 1 -qcrest/qtrough) in order to identify 
the basic wave. The numerical experiments were performed for five different values 
of w (viz. w = 0.82,0.83,0.84, 0.85 and 0.86) which all lie between wE and w,, where 
wE and w, correspond to the total energy maximum (wE = 0.8135; ak  = 0.4292) and 
the phase speed maximum (w, = 0.8637; uk = 0.4359), respectively. The result of 
[MT] suggests that the basic wave is unstable for all these values of w and that the 
disturbance would grow exponentially in all cases. For the initial conditions for $ 
and f ,  we employed the unstable eigenfunctions obtained in the linear stability 
calculations of [MT]. To determine the growth rate of the disturbance, we calculated 
the ratio R(t) of the potential energy at the initial and the later time, i.e. 

JIE {f(X? t)>' dx 

J-* {r"(x, 0)Y dx. 

R(t) = * 

If the disturbance grows as eAt, as assumed in the linear stability calculation, the 
growth rate A can be calculated by A = lnR(t)/Zt. 

Table 1 lists the quantitative results for the cases of w = 0.83 and 0.85. This table 
clearly shows that the disturbance actually grows exponentially in time with just the 
growth rate anticipated from [MT]. In  all the other cases, for which we do not show 
the results explicitly, we could also obtain such agreement. 

In order to obtain another independent verification, we also carried out the linear 
stability calculations again, employing basically the method developed by Longuet- 
Higgins (1978), a method quite different from our original 0ne.t Because the method 
is almost the same as his except for some minor alteration mentioned below, only the 
numerical results will be shown here. By the method of Longuet-Higgins, the linear 
stability calculation is ultimately reduced to an eigenvalue problem, AAx = Bx, 
where A and B are some known matrices and the eigenvalues A correspond to the 
growth rate of the linear disturbances (i.e. the disturbances are assumed to depend 
on t as eAt) .  The dimension of the matrices A and B is 4N+2 with N the order of 
the truncation of the Fourier series appearing in the formulation. However, as in our 
original formulation, i t  can easily be shown that this eigenvalue problem for A with 
dimension 4N+2 can be reduced to that for A2 with dimension 2N+1 by an 

t The same calculation has recently also been performed independently by Professor Longuet- 
Higgins. He kindly gave us the results of his calculation and we could check the validity of our 
results. 
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w = 0.83 
(Atheor. = 1.4235 x lo-') 

w = 0.85 
(Atheor. = 2.2264 x 10-l) 

t R(t) In R(t)/2t R(t) In R(t)/2t 

1 .o 1.3294 1.4235 x 10-1 1.5609 2.2264 x 10-l 
2.0 1.7672 1.4235 x 10-1 2.4365 2.2264 x 10-1 
3.0 2.3493 1.4235 x 10-l 3.8031 2.2264 x 10-I 
4.0 3.1230 1.4235 x 10-l 5.9365 2.2264 x 10-l 
5.0 4.1517 1.4235 x 10-l 9.2659 2.2263 x 10-l 

TABLE 1. The quantitative results of the numerical experiments for w = 0.83 and 0.85. 
Atheor. are the growth rates anticipated from the result of [MT]. 

0.1- 

I 1 

0.40 0.42 a. 
ak \ 

FIQURE 1.  Graph of the squared eigenvalue - A 2  versus ak. 0.0, our previous results (1983); 
+ , present results. The bracket attached at ak = 0.43 roughly indicates the numerical inaccuracy 
involved. 

appropriate rearrangement of the rows and columns. Therefore the dimension of the 
matrices which should be handled in the actual calculation can be reduced by half 
without any loss of information. Needless to say, this reduction is possible at the stage 
of the original linearized disturbance equations (2.2) or (2.3) before the introduction 
of the Fourier series expansions and the truncations. 

Figure 1 shows the behaviour of the eigenvalue of the mode n = 2 thus obtained. 
The result of our previous work [MT] is also shown in the same figure for comparison. 
Because this method does not involve any artificial stretching of the coordinates like 
that involved in our original method, the accuracy of the basic wave and the 
convergence of the relevant eigenvalues are not sufficient especially a t  the largest 
steepness treated. Nevertheless, figure 1 still indicates clearly that the formulation 
of Longuet-Higgins and our original one are equivalent and give the same result. 

3. The eigenvectors near the critical point 
Quite recently, Longuet-Higgins (1984) has produced another great advance in the 

linear stability theory of surface gravity waves. In that work, he restricted his 
attention exclusively to those eigenmodes with zero eigenvalue and derived the 

10-2 
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conclusion that, other than a pure phase shift, a neutral eigenmode can only exist 
at the steepnesses where the phase speed of the wave becomes stationary. His 
approach was entirely analytical, involving rather simple matrix calculus only, and 
there seems no doubt about the validity of this conclusion. 

On the other hand, the linear stability calculation of [MT] clearly indicates that, 
besides the mode n = 1 which is the trivial neutral eigenmode corresponding to a pure 
phase shift, there exists another neutral mode n = 2 at the point of maximum total 
energy. As the phase speed does not become stationary at this point, the existence 
of this extra neutral mode would seem to violate the analytical result of Longuet- 
Higgins mentioned above. 

However, there remains one way in which the analytical result of Longuet-Higgins 
and the numerical result of [MT] do not contradict each other. If the eigenvector of 
the mode n = 2 happens to become identical with that of a pure phase shift (i.e. the 
mode n = 1) at the critical point, then the two results are not in conflict at al1.t This 
unexpected possibility has not been taken into account before, but actually occurs 
at the critical point as shown below. 

The eigenvectors x considered in this section consist of 4N+ 1 elements as 

t~ = (u,, . . . , uN ; do, . . . , dN ; b,, . . . , b, ; el, . . . , eN) 

where the elements are related to 8 and r" by the following relations, 
N 

k-I 

N 

The eigenvector of the mode n = 1 (a pure phase shift) and that of the mode n = 2 
will be expressed as x, and x,, respectively. The upper half of x, is of course zero 
because of the antisymmetry of this mode. All the eigenvectors are assumed to be 
normalized as I x = 1. 

As a measure of the linear independence of x, and x,, we employed the quantity 
G,, defined by 

GI, 1 - (xi, x,)~, 

which is the so-called Gram's determinant for two vectors x1 and x, and is well known 
to vanish only when x, and x, are linearly dependent. In  figure 2 the values of G,, 
are shown as a function of w. As is clearly seen from this figure, the linear 
independence of the two vectors diminishes as w approaches the critical value and 
ultimately G,, vanishes just when the critical point is reached, implying that the 
unstable eigenvector x, becomes identical with that of a pure phase shift x, there. 
Thus the numerical result of [MT] does not violate the analytical conclusion of 
Longuet- Higgins . 

This situation may be summarized in more general terms as follows. At  the critical 
point (i.e. the point of maximum total energy), the algebraic multiplicity of zero 
eigenvalue of the relevant coefficient matrix is 4 (as the non-reduced system) while 
the geometrical multiplicity ofthat eigenvalue (i.e. the number oflinearly independent 
eigenvectors) is only 1. The Jordan block corresponding to zero eigenvalue would 
therefore be of 4 by 4 with three 1's just above the main diagonal. 

By taking into account this new finding, the cause of the apparent contradiction 
with Chen & Saffman can also be explained. Their method of calculation was by an 

t This possibility was first pointed out to the author by Dr M. Yamada of Kyoto University. 
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FIGURE 2. Graph of O,, versus o. The sign ( ) indicates the critical point detected in [MT]. 

integro-differential equation involving the displacement of the free surface. Any 
solution of this equation, however, infinitely degenerated, that is, this equation 
involves infinitely many solutions all of which express just the same wave but merely 
displaced horizontally and vertically. Then they removed this degeneracy by adding 
three more requirements and fixing the origin of the coordinates by them. This implies 
that they discarded the mode corresponding to a pure phase shift from the outset. 
At  the critical point, however, the eigenmode which becomes critical there is nothing 
but a pure phase shift as shown above and this is just the type of disturbance they 
removed from their formulation. Therefore, even if the Jacobian of Chen t Saffman 
does not vanish at the critical steepness detected in [MT], it by no means implies that 
these two works are inconsistent with each other. 

As mentioned in the introduction, it haa recently been proved analytically by 
Longuet-Higgins (1985) that, apart from the trivial bifurcation which corresponds 
to a pure phase shift and is possible at any steepness, no ‘superharmonic’ bifurcation 
occurs throughout the complete range of ak. We should therefore admit that the 
conclusion in [MT] as to the possibility of ‘superharmonic’ bifurcation must be 
erroneous. And we can now readily understand the reason for our arriving at this. 
When we found numerically in [MT] that the eigenvalue of the mode n = 2 becomes 
zero at the critical point, we naively imagined that the corresponding eigenvector 
should be different from that of the trivial mode n = 1 and that there would be 
another branch of steady solution along the direction of this vector. However, the 
situation which actually occurs at the critical point is somewhat more complicated 
than we imagined, as shown above, that is, the number of the independent 
eigenvectors corresponding to zero eigenvalue does not increase but remains one (a 
pure phase shift) even though the multiplicity is increased algebraically. In  [MT], we 
carelessly overlooked this possibility and accordingly came to the erroneous 
conclusion. 
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4. Conclusions and discussions 
In this work, we first performed two more numerical calculations which indepen- 

dently confirmed the numerical results of our previous work [MT] on the linear 
stability of periodic surface gravity waves on deep water to ‘superharmonic’ 
disturbances. Next, we showed explicitly that at  the critical point the eigenvector 
of the mode n = 2 which loses stability there becomes linearly dependent on that of 
the mode n = 1, i.e. the trivial neutral mode corresponding to a pure phase shift, by 
evaluating the Gram’s determinant for these two vectors. Taking into account this 
new finding, we also clarified the causes of the apparent contradictions which had 
existed between the results of [MT] and other works. 

Our knowledge of the linear stability and the bifurcation of the steady solutions 
of surface gravity waves has thus been greatly increased by recent excellent work 
by several authors as well as ours. However, there still remain several problems as 
yet unresolved, the following two being of particular imp0rtance.t 

First, although the simple intuitive argument (Longuet-Higgins 1978) and the 
analytical approach (Longuet-Higgins 1984) both suggest that there should exist a 
non-trivial neutral eigenmode at  the point of maximum phase speed, nevertheless 
such a mode does not appear in the linear stability calculation either by the method 
of Longuet-Higgins or by our original one. The reason for this discrepancy is not 
known to the author as yet. 

The second concerns the relation between the critical steepness and the steepness 
where the total energy and the impulse become stationary. As far as the numerical 
results are concerned, these two points coincide with each other and are indistinguish- 
able. Recently we have also confirmed that the next higher mode n = 3 becomes 
unstable just a t  the second extremum (local minimum) of the total energy and the 
impulse. However, any result obtained numerically contains an inevitable lack of 
certainty, and some analytical proof should be necessary. The necessity for an 
analytical approach would be more essential in the case of the solitary wave. 

We are now investigating the linear stability of the solitary wave also. Although 
we have not performed calculations intensively as yet and the numerical data are 
not sufficient, the results obtained so far clearly indicate that, like the periodic wave 
on deep water treated here, the solitary wave also loses stability a t  an amplitude 
which is well below the one corresponding to the maximum phase speed. In this case, 
however, the behaviour of the eigenvalue is quite different from that of the 
periodic-wave case and the numerical results appear to indicate that i t  would be much 
more difficult to decide the critical amplitude by numerical calculations only and that 
some analytical approach would be indispensable in doing so. 

The author wishes to express his cordial thanks to Prof. M. S. Longuet-Higgins 
for many helpful discussions. In  particular the numerical calculation reported in the 
latter part of $2 was performed in correspondence with him. He is also grateful to 
Dr M. Yamada of Kyoto University for his many valuable advices, helpful discussions 
and kind inspection of the manuscript. This work was supported by the Grant-in-Aid 
for Scientific Research 597401 72 from the Ministry of Education, Science and Culture. 

t Quite recently, these problems have been completely solved analytically by Saffman (1985) 
in quite an elegant manner. 
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